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Frantǐsek Kolovský1[0000−0002−2070−5871] and Ivana
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Abstract. This paper deals with origin-destination matrix estimation
using traffic counts where the traffic assignment subproblem is solved
using modern bush-based algorithms that are very powerful. The pro-
posed algorithm for the origin-destination matrix estimation uses the
well-known advantages of bushes (the origin-rooted acyclic subgraph) so
that the algorithm does not need to enumerate the paths between origins
and destinations. The proposed approach saves 5%-17% of the compu-
tation time compared to the methods that enumerate the paths and
also is less memory demanding. The algorithm especially speeds up the
origin-destination matrix estimation on high congested road networks.
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1 Introduction

The origin-destination matrix (ODM) estimation (also called calibration) is a
very important step in transportation modeling. Unfortunately, it is also a very
time-consuming step. There is a lot of methods how to estimate the matrix , e.g.,
using speed data, traffic counts, and partial path data (license plates). In this
paper, we deal with ODM estimation using traffic counts. The input is observed
traffic flow on selected links and an initial ODM. The output is the calibrated
matrix.

After the year 2000, the bush-based algorithms for solving user equilibrium
(UE) came. These algorithms provide the equilibrated flow on acyclic subgraphs
called bushes so these algorithms compute the UE implicitly without path enu-
meration and they seem the most powerful class of algorithms for solving UE
[13].
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In the classic formulations of ODM estimation, the flows on paths between
origin-destination pairs are needed to compute the search direction during the
matrix estimation. It is well-known that the solution of UE in the path space
is not unique and the maximum entropy UE (MEUE) should be computed [19].
The best-known method for solving MEUE is also bush-based and computes the
solution without the path enumeration.

Our proposed method builds on bush-based methods and estimates the ODM
also without path-enumeration and thus saves the memory and computational
time.

In Section 2 there are definitions of the problem and all subproblems with
a literature survey. Section 3 introduces the proposed method for the determi-
nation of the assignment matrix. The numerical tests are described in Section
4.

2 Problem definition and state-of-the-art

The task is to estimate (calibrate) the origin-destination matrix using the traffic
counts. The inputs are non-calibrated (target or initial) ODM and traffic counts
on selected edges in the road network.

Let G = (N,A) be a directed graph that represents the road network, where
N is a set of nodes and A is a set of edges. The set of zones Z ⊂ N contains all
nodes where the vehicles enter/leave the road network. The g = {gij : ij ∈ W}
is the origin-destination matrix (ODM) containing the number of trips between
all zones, where W is a set of all origin-destination (OD) pairs. The gij is the
number of trips between the origin zone i ∈ Z and the destination zone j ∈ Z.
The Q = {g : gij ≥ 0} is a set of all feasible ODMs.

2.1 Origin-destination matrix estimation

Let v̂ = (v̂a : a ∈ Â) be a vector of observed traffic flows where Â ⊂ A is a
set of edges where the traffic flow was measured. According to [10] the origin-
destination matrix estimation problem is defined as bi-level optimization prob-
lem as

min
g
F (g) = γ1F1(g, ĝ) + γ2F2(v(g), v̂) (1)

where ĝ is the initial (target) ODM and v(g) is a function that assigns the ODM
to the road network. This function provides the static user equilibrium (see next
section). The functions F1 and F2 return the distance between vectors and can
be defined in various way.

The formulation of the objective function F based on entropy maximization
was published by Henk [18], [22]. The maximum likelihood approach was pre-
sented by [16]. Cascetta used the objective functions based on generalized least
squares [4]. The Bayesian inference approach provides a method for combining
of two sources of information [11], [6]. Solution based on classic least squares
was published in [17], [10], [14].
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For the purpose of this paper, we simply choose γ1 = 0 and

F = F2 =
1

2

∑
a∈Â

(va − v̂a)2 (2)

as in [17]. There is a lot of methods how to solve this bi-level problem. The
general approach is to use the steepest decedent with a long step [10] [17]. A
general solution strategy consists from three steps:

– Compute search direction. The simplest method is to take the negative value
of the gradient.

– Determine the size of a step so that the objective function is minimized.
– Update the ODM using the search direction and the step size.

The most difficult task is to compute the gradient of F2, namely, the value of ∂va

∂gij

[10]. For computation of these values there is several heuristic methods (see [10]).
A common feature of these methods is that they need the assignment matrix.
The assignment matrix expresses the relationship between the edge flow va and
OD flow gij .

In this paper we present an effective way how to compute the assignment
matrix implicitly without path enumeration. For this purpose, the origin-rooted
flow provided by bush-based algorithms, are used.

2.2 User equilibrium

Let the cost ca of the edge a ∈ A is dependent on the traffic flow va

ca = ca(va) (3)

It is assumed that the cost function ca(va) is monotonically increasing and con-
vex. The user’s route choice is dependent on travel costs. It follows that equi-
librium must be found. The user equilibrium is the state where every used path
from the source zone i to the destination zone j has an equal (minimal) cost.
The problem of searching user equilibrium is called Traffic Assignment Problem
(TAP) and can be defined as Variational Inequality problem (VI) [15], [5]. The
optimal solution v∗p must satisfy∑

p∈P
cp(v∗p)(vp − v∗p) ≥ 0, ∀u ∈ Λ (4)

where vp is the flow on the path p, P is the set of all used paths in the road
network, cp is the cost of path p, u = (vp : p ∈ P ) is a vector of all path flows,
and Λ is the set of all feasible solutions in the space of paths

Λ =

u > 0 :
∑
p∈Pij

vp = gij ∀ij ∈W

 (5)
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where Pij ⊂ P is a set of used paths for OD pair ij ∈ W . The relationship
between the solution in the path space and the edge space is

va =
∑
p∈P

δapvp (6)

where δap ∈ {0, 1} is equal to one if the edge a lies on the path p otherwise the
δap is zero. It should be noted that there is only one solution in edge space. In
contrast with this the solution in path space is not unique [19].

There are three basic groups of algorithms for solving TAP [13]:

– Link-based algorithms compute the solution in the edge space. They have
low memory requirements but very poor convergence rate. A classic repre-
sentative of this group is Frank-Wolfe algorithm (FW). e.g., [9]

– Path-based algorithms search the solution in the path space. They are much
faster than the link-based algorithms but generally need a lot of memory for
the path enumeration. e.g, [20], [1]

– Bush-based algorithms decompose the problem to acyclic sub-graphs called
bushes. These algorithms are fast and do not need to enumerate the paths.
e.g., [2], [7], [8], [3].

As was shown by Perederieieva in [13], the bushed-based algorithms generally
provide good performance.

2.3 Maximum Entropy User Equilibrium

As mentioned above, the assignment matrix and the flow on paths are necessary
for ODM estimation, but the solution in path space is not unique. We must
choose the solution with the most likely realization that is generally understood
in terms of maximum entropy. The maximum entropy user equilibrium (MEUE)
is defined as [19]

max
vp

= −
∑
ij∈W

∑
p∈Pij

vp log

(
vp
gij

)
(7)

subject to ∑
p∈Pij

vp = gij , ∀ij ∈W (8)

∑
p∈P

δapvp = va, ∀a ∈ A (9)

vp ≥ 0, ∀p ∈ P (10)

In literature, two methods can solve the MEUE problem for real size networks.
The first method by Xie [21] uses the paired alternative segments that are pro-
vided by TAPAS algorithm [3]. The second method, also by Xie [19] uses the flow
on bushes and maximizes entropy on them so the method does not enumerate
the paths. As was shown in [19], the second method provides better results.



Origin-destination matrix estimation using bush-based algorithms

3 Proposed solution

In this section, the implicit method for computing the assignment matrix is
introduced. For this purpose, the flow on bushes is used. This bush-based flow
has to fulfill the user equilibrium and maximizes the entropy. In this paper, the
B-algorithm by Dial [7] is used for providing the equilibrated bash-based flow.
For entropy maximization, the algorithm by Xie [19] was implemented.

For purpose of this paper, we build on the estimation approaches according
to Spiess [17] because it is simple and effective for large networks [10]. However,
the idea of assignment matrix computation can be applied to various estimation
methods.

According to [17] the gradient is computed as

∂F (g)

∂gij
=
∑
k∈Pij

pk
∑
a∈Â

δak(va − v̂a) (11)

=
∑
a∈Â

(va − v̂a)
∑
k∈Pij

pkδak (12)

where pk = vk
gij

is probability that user chooses the path k on the trip between

origin i and destination j. The δap ∈ {0, 1} is one if the edge a lies on path p
else is zero. Let us set

paij =
∑
k∈Pij

pkδak (13)

where paij is the probability that the user crosses the edge a on the trip between
origin i and destination j. The P = {paij : ij ∈ W,a ∈ A} is the assignment
matrix. By substitution (13) to (11) we obtain the negative value of search
direction

dij =
∑
a∈Â

(va − v̂a)paij (14)

According to [17] the ODM update is performed as

gij = gij(1− λdij) (15)

where λ is the length of the step. Using the assignment matrix P, the optimal
step length can be rewritten as

λ =

∑
a∈Â v

′
a(v̂a − va)∑

a∈Â(v′a)2
(16)

where

v′a =
∂va
∂λ

= −
∑
ij∈W

gijdijp
a
ij (17)
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3.1 The implicit computation of assignment matrix

Let via be the flow on the edge a ∈ A that starts in the origin i ∈ Z. The
edges where via > 0 creates the acyclic sub-graph called a bush. For more precise
definition see [12]. The source node of the edge a is noted as s(a) and the target
node t(a).

According to [19], the path flow can be computed as

vk = gij
∏
a∈k

φia (18)

where

φia =
via∑

e∈I(t(a)) v
i
e

(19)

where I(n) is a set of incoming edges to the node n ∈ N . The φia represents the
proportion of all bush flow inflowing to the target node t(a) of the edge a. The
s(a) is the source node of the edge a. Combining (13) and (19) we have

paij =
∑
k∈Pij

δak
∏
e∈k

φie (20)

The implicit computation of the assignment matrix paij is based on Breadth
First Search (BFS). Let κn be a node label representing the probability that a
driver crosses the node n on the trip between zones i and j. It follows, that

paij = κt(a)φ
i
a (21)

and
κn =

∑
a∈O(n)

paij (22)

where O(n) is a set of outgoing edges from node n. Using the equations (21) and
(22) paij can be determined sequentially for all used edges a corresponding with
the OD pair ij.

In Algorithm 1 there is a pseudo-code that computes the assignment matrix
for one OD pair. The input of the algorithm is the origin node i ∈ Z, destination
node j ∈ Z and the feasible flow via on the bush originated at i. For whole
assignment matrix, the Algorithm 1 must be run for every OD pair.

First, it is necessary to determine how many outgoing edges from the node n
lead to the destination j. The edges with paij = 0 do not lead to the destination
j. For this purpose, the BFS on the reverse graph is used. The searching starts
at the destination node j. In Algorithm 1, the searching is represented by lines
??-10.

The second part of the algorithm sequentially determines paij values. The
BFS started at the destination node j is also used for this purpose. The origin
and destination node must cross all vehicles so κi = κj = 1.0. In every edge
relaxation paij is determined and the node label κs(a) is updated. The node s(a)
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Algorithm 1: Implicit computation of the assignment matrix. The in-
put is the OD pair ij ∈ W and the feasible flow via on bush originated
at i.

1 on = 0 ∀n ∈ N
2 U is the FIFO queue of nodes
3 U.add(j)
4 while |U | > 0 do // compute the number of outgoing edges on
5 n = U.remove()
6 foreach e ∈ I(n) do
7 if vie > 0 then
8 if os(e) = 0 then
9 U.add(s(e))

10 os(e) = os(e) + 1

11 κn = 0 ∀n ∈ N
12 κj = 1.0 // probability at destination node

13 U.add(j)
14 while |U | > 0 do // determine the peij for every link in the bush

15 n = U.remove()

16 compute φi
e ∀e ∈ I(n)

17 foreach e ∈ I(n) do
18 if φi

e > 0 then
19 peij = κnφ

i
e

20 κs(e) = κs(e) + peij
21 os(e) = os(e) − 1
22 if os(e) = 0 then
23 U.add(s(e))

is added to the queue only if κs(a) was updated by all outgoing edges leading to
the destination. In Algorithm 1, this procedure is represented by lines 14-23.

In Figure 1 you can see an example bush with φia that are computed from
the bush flow and the result probability values paij . The dashed lines represent
the edges leading to other destinations. These edges are eliminated by the first
part of the algorithm.

4 Numerical tests

The proposed method and the original method by [17] for ODM estimation were
implemented in the Java programming language. The B-algorithm [7] for solving
UE and the algorithm by [19] for determining the MEUE were also implemented
in Java. All tests were performed on a laptop with four core processor Intel(R)
Core(TM) i5-8250U CPU @ 1.60GHz and with 16 GB RAM. For testing, the
real model of Pilsen (the city in the Czech Republic) was used. The model
has 9036 edges, 3727 nodes, 316 zones, and 65411 OD pairs. The relative gap
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Fig. 1. Example bush with φi
a and paij values

for B-algorithm was set to 10−10. For a simulation of the high-congested (HC)
situation, the original ODM was multiplied by 2.0.

number of paths update runtime [ms] savings [%]
model initial target explicit implicit

Pilsen 66 109 69 179 19 467 9 691 50
Pilsen HC 71 083 124 346 26 241 10 041 62

Table 1. Testing results

In Table 1 there are results of the tests. The update runtime column repre-
sents the time that the algorithm spends in the ODM update procedure. The
initial number of paths is counted before entropy maximization and the target
is measured after entropy maximization. In the case of the original model, there
are only 1.06 paths for one OD pair in average. Despite that, the time-savings
in the update procedure compared to the original method by [17] are 50%. In
high-congested case, there are 1.9 paths for one OD pair in average and the
time-savings increase to 62%. It follows that the proposed method is suitable in
cases, where there is a lot of route choices.

The most time-consuming part of the ODM estimation is the computation
of MEUE so the total time savings are only 6% in the HC case. In most state-of-
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the-art approaches, the entropy maximization is not taken into account. In this
case, the time-savings are 17% for the HC model.

5 Conclusion

The method that computes the assignment matrix implicitly from bush-based
flows was introduced. This method does not need to enumerate the paths so the
computation of the search direction and the optimal step length is more effective.
The tests show that the proposed method saves more than 50% of the time that
is needed for ODM updates. In the total computation time, the savings are in
the order of percent.

The most time-consuming part is the computation of MEUE. It would be
interesting to determine how the precision of the MEUE solution influences the
quality of ODM estimation and possibly decreases the accuracy of MEUE com-
putation.
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